Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces.

نویسندگان

  • Congqing Wu
  • Ru-Ting Huang
  • Cheng-Hsiang Kuo
  • Sandeep Kumar
  • Chan Woo Kim
  • Yen-Chen Lin
  • Yen-Ju Chen
  • Anna Birukova
  • Konstantin G Birukov
  • Nickolai O Dulin
  • Mete Civelek
  • Aldons J Lusis
  • Xavier Loyer
  • Alain Tedgui
  • Guohao Dai
  • Hanjoong Jo
  • Yun Fang
چکیده

RATIONALE PhosPhatidic Acid Phosphatase type 2B (PPAP2B), an integral membrane protein known as lipid phosphate phosphatase (LPP3) that inactivates lysophosphatidic acid, was implicated in coronary artery disease (CAD) by genome-wide association studies. However, it is unclear whether genome-wide association studies-identified coronary artery disease genes, including PPAP2B, participate in mechanotransduction mechanisms by which vascular endothelia respond to local atherorelevant hemodynamics that contribute to the regional nature of atherosclerosis. OBJECTIVE To establish the critical role of PPAP2B in endothelial responses to hemodynamics. METHODS AND RESULTS Reduced PPAP2B was detected in vivo in mouse and swine aortic arch (AA) endothelia exposed to chronic disturbed flow, and in mouse carotid artery endothelia subjected to surgically induced acute disturbed flow. In humans, PPAP2B was reduced in the downstream part of carotid plaques where low shear stress prevails. In culture, reduced PPAP2B was measured in human aortic endothelial cells under atherosusceptible waveform mimicking flow in human carotid sinus. Flow-sensitive microRNA-92a and transcription factor KLF2 were identified as upstream inhibitor and activator of endothelial PPAP2B, respectively. PPAP2B suppression abrogated atheroprotection of unidirectional flow; inhibition of lysophosphatidic acid receptor 1 restored the flow-dependent, anti-inflammatory phenotype in PPAP2B-deficient cells. PPAP2B inhibition resulted in myosin light-chain phosphorylation and intercellular gaps, which were abolished by lysophosphatidic acid receptor 1/2 inhibition. Expression quantitative trait locus mapping demonstrated PPAP2B coronary artery disease risk allele is not linked to PPAP2B expression in various human tissues but significantly associated with reduced PPAP2B in human aortic endothelial cells. CONCLUSIONS Atherorelevant flows dynamically modulate endothelial PPAP2B expression through miR-92a and KLF2. Mechanosensitive PPAP2B plays a critical role in promoting anti-inflammatory phenotype and maintaining vascular integrity of endothelial monolayer under atheroprotective flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klf2 is an essential regulator of vascular hemodynamic forces in vivo.

Hemodynamic responses that control blood pressure and the distribution of blood flow to different organs are essential for survival. Shear forces generated by blood flow regulate hemodynamic responses, but the molecular and genetic basis for such regulation is not known. The transcription factor KLF2 is activated by fluid shear stress in cultured endothelial cells, where it regulates a large nu...

متن کامل

Up-regulation of pressure-activated Ca(2+)-permeable cation channel in intact vascular endothelium of hypertensive rats.

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal ...

متن کامل

Flow-mediated endothelial mechanotransduction.

Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and th...

متن کامل

Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability.

OBJECTIVE Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk...

متن کامل

Translating GWAS Into the Flow-Regulated Modulation of Lipid Mediator Signaling.

I t is well accepted that the stimulation of endothelial cells by the blood flowing over them can alter the generation of endothelium-derived vasodilators, such as nitric oxide (NO), to fine tune vascular tone. The shear stress generated by the flowing blood can also affect endothelial cell signaling and while laminar shear stress, which has also been termed athero-protective flow, generally ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 117 4  شماره 

صفحات  -

تاریخ انتشار 2015